If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3u^2)-16=0
a = 3; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·3·(-16)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*3}=\frac{0-8\sqrt{3}}{6} =-\frac{8\sqrt{3}}{6} =-\frac{4\sqrt{3}}{3} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*3}=\frac{0+8\sqrt{3}}{6} =\frac{8\sqrt{3}}{6} =\frac{4\sqrt{3}}{3} $
| 4z/−12=-3 | | 5-13=y | | 4x+-67=18+-1Y | | (3x+1)=(3x+8) | | 2(x+8)=4x-16 | | 0.25x-2=-3.25 | | 5x+13∘+3x+33∘=70 | | 3x+(x+15)+43=180 | | 1/4(k-1)=-10 | | 5x+9+28=180 | | 4x+52∘8x−10∘=180 | | 3x^2−16=9−x^2 | | .01x+x=565.40 | | 3(2p-1)+2(5p-10)=8+9 | | x+.01x=565.4 | | 1x+.01(x)=565.40 | | -5a+6a=6a-38 | | 9.5(3-x)=3.4(x-3) | | x×x=100 | | 6(x+3)=2(2x=5) | | 12(x-90)+35=52 | | -2x-2=-3x+1 | | -1.5y-5=y | | x^2-8x-5700=0 | | 15x-6=120 | | Y=3.00x+0.75 | | n2-7n=0 | | Y=30,000x+2,000 | | 11(x-77)+12=92 | | y/4.5=12 | | 7(x-50)+100=83 | | 5x+29=144 |